Nanostructured high-strength alloys
نویسندگان
چکیده
منابع مشابه
Towards electroformed nanostructured aluminum alloys with high strength and ductility
Towards electroformed nanostructured aluminum alloys with high strength and ductility. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Nanostructured Al–Mn alloys ...
متن کاملNanostructured high-strength molybdenum alloys with unprecedented tensile ductility.
The high-temperature stability and mechanical properties of refractory molybdenum alloys are highly desirable for a wide range of critical applications. However, a long-standing problem for these alloys is that they suffer from low ductility and limited formability. Here we report a nanostructuring strategy that achieves Mo alloys with yield strength over 800 MPa and tensile elongation as large...
متن کاملSimultaneously Increasing the Ductility and Strength of Nanostructured Alloys
Strength and ductility are two of the most important mechanical properties of structural materials. However, they are often mutually exclusive, i.e., a material may be strong or ductile, but rarely both at the same time. This is also true for bulk nanostructured materials, which usually have high strength, but disappointingly low ductility. Bulk nanostructured materials are usually synthesized ...
متن کاملHigh-Strength Aluminum P/M Alloys
POWDER METALLURGY (P/M) technology provides a useful means of fabricating net-shape components that enables machining to be minimized, thereby reducing costs. Aluminum P/M alloys can therefore compete with conventional aluminum casting alloys, as well as with other materials, for costcritical applications. In addition, P/M technology can be used to refine microstructures compared with those mad...
متن کاملHigh-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.
The dimensionless thermoelectric figure of merit (ZT) in bismuth antimony telluride (BiSbTe) bulk alloys has remained around 1 for more than 50 years. We show that a peak ZT of 1.4 at 100 degrees C can be achieved in a p-type nanocrystalline BiSbTe bulk alloy. These nanocrystalline bulk materials were made by hot pressing nanopowders that were ball-milled from crystalline ingots under inert con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2017
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.356.6335.281-g